The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation.

نویسندگان

  • Junfeng Wang
  • Lynda Elghazi
  • Susan E Parker
  • Hasan Kizilocak
  • Masahide Asano
  • Lori Sussel
  • Beatriz Sosa-Pineda
چکیده

Pancreatic beta cells play a central role in maintaining glucose homeostasis because they secrete insulin in response to increased level of blood glucose; failure of this capacity constitutes a major component of the pathogenesis of diabetes. The identification of key regulators of pancreatic beta-cell differentiation is relevant for the overall understanding of this process and for future experiments aimed at regenerating insulin-producing beta cells from pancreatic or embryonic stem cells. Several studies using transgenic or knockout mice have established that the development and function of pancreatic beta cells are controlled by several genes encoding specific transcription factors. By inactivating the homeobox gene Pax4, we previously demonstrated that its function is required for the formation of mature insulin-producing cells. Here, we show that during pancreas ontogeny, Pax4 is expressed in differentiating endocrine cells, including beta cells. Pax4 activity appears essential for appropriate initiation of beta-cell differentiation because loss of Pax4 prevents the expression of Pdx1, HB9 and insulin in beta-cell precursors. This role of Pax4 appears to be accomplished via its genetic interaction with another homeobox gene, Nkx2.2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development

Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broa...

متن کامل

Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice.

The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in t...

متن کامل

Effect of Silymarin on Blood Glucose concentration and Pax4 Gene Expression and Histopathology of Pancreatic Tissue in Streptozotocin-Induced Diabetic Wistar Rats

Aim and Background: Considering the high rates of diabetes in Iran and the world and also due to the lower side effects of medicinal plants compared to industrial and chemical arbitrators, this study examined the effect of the active ingredient of tall moss (silymarin) on the expression of pax4 gene, one of the key genes for development and reconstruction of pancreatic beta cells.   Material ...

متن کامل

Initial Cell Seeding Density Influences Pancreatic Endocrine Development During in vitro Differentiation of Human Embryonic Stem Cells

Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have rem...

متن کامل

Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3

Regulatory proteins have been identified in embryonic development of the endocrine pancreas. It is unknown whether these factors can also play a role in the formation of pancreatic endocrine cells from postnatal nonendocrine cells. The present study demonstrates that adult human pancreatic duct cells can be converted into insulin-expressing cells after ectopic, adenovirus-mediated expression of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 266 1  شماره 

صفحات  -

تاریخ انتشار 2004